A small circular TAR RNA decoy specifically inhibits Tat-activated HIV-1 transcription.
نویسندگان
چکیده
Linear TAR RNA has previously been used as a decoy to inhibit HIV-1 transcription in vitro and HIV-1 replication in vivo. A 48 nucleotide circular RNA containing the stem, bulge and loop of the HIV-1 TAR element was synthesized using the self-splicing activity of a group I permuted intron-exon and was tested for its ability to function as a TAR decoy in vitro. This small circular TAR molecule was exceptionally stable in HeLa nuclear extracts, whereas a similar linear TAR molecule was rapidly degraded. The TAR circle bound specifically to Tfr38, a peptide containing the TAR-binding region of Tat. The ability of Tat to trans-activate transcription from the HIV-1 promoter in vitro was efficiently inhibited by circular TAR RNA but not by TAR circles that contained either bulge or loop mutations. TAR circles did not inhibit transactivation exclusively by binding to Tat since this inhibition was not reversed by adding excess Tat to the transcription reaction. Together, these data suggest that TAR circles act as decoys that inhibit transactivation by binding to Tat and at least one cellular factor. These data also demonstrate the utility of small circular RNA molecules as tools for biochemical studies.
منابع مشابه
TAR RNA decoys inhibit tat-activated HIV-1 transcription after preinitiation complex formation.
The ability of the HIV-1 Tat protein to trans -activate HIV-1 transcription in vitro is specifically inhibited by a circular TAR RNA decoy. This inhibition is not overcome by adding an excess of Tat to the reaction but is partially overcome by adding Tat in combination with nuclear extract, suggesting that TAR RNA might function by interacting with a complex containing Tat and cellular factor(s...
متن کاملIsolation and characterization of an RNA that binds with high affinity to Tat protein of HIV-1 from a completely random pool of RNA
The trans-activation (Tat) protein of human immunodeficiency virus type-1 (HIV-1) is vital for the replication of the virus. In a transcription assay i n v i t r o in the presence of authent ic TAR RNA, we found that authentic TAR RNA inhibits transcription from a template based on the CMV early promoter in a manner that is not related to the Tat/TAR interaction. Using variants of TAR RNA, we i...
متن کاملInhibition of transcription by the TAR RNA of HIV-1 in a nuclear extract of HeLa cells.
Regulation of transcription of human immunodeficiency virus type-1 (HIV-1) requires specific interaction of Tat protein with the trans-activation response region (TAR). Inhibition of replication of HIV-1 has previously been achieved with a TAR decoy, namely a short RNA oligonucleotide that corresponded to the sequence of the authentic TAR RNA. Since TAR RNA has the potential to interact with ce...
متن کاملA nucleolar TAR decoy inhibitor of HIV-1 replication.
Tat is a critical regulatory factor in HIV-1 gene expression. It mediates the transactivation of transcription from the HIV-1 LTR by binding to the transactivation response (TAR) element in a complex with cyclin T1. Because of its critical and early role in HIV gene expression, Tat and its interaction with the TAR element constitute important therapeutic targets for the treatment of HIV-1 infec...
متن کاملAnalysis of arginine-rich peptides from the HIV Tat protein reveals unusual features of RNA-protein recognition.
Arginine-rich sequences are found in many RNA-binding proteins and have been proposed to mediate specific RNA recognition. Fragments of the HIV-1 Tat protein that contain the arginine-rich region of Tat bind specifically to a 3-nucleotide bulge in TAR RNA. To determine the amino acid requirements for specific RNA recognition, we synthesized a series of mutant Tat peptides spanning this domain (...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
- Nucleic acids research
دوره 24 19 شماره
صفحات -
تاریخ انتشار 1996